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Abstract. This article notes that it is now practical to use the method of enumeration to analyse
the performance of estimators and hypothesis tests of fully parametric binary data models. The
general method is presented and then employed to investigate the power performance of a common
misspecification test for the Probit model. The advantages, disadvantages and limitations of enu-
meration compared with standard Monte Carlo simulation are then discussed. Finally, an example
from experimental economics is used to demonstrate that the methodology can also be used in small
empirical studies.
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1. Introduction

In practice, the standard inferential methods for econometric models proceed under
the assumption that the asymptotic approximation to the distribution of a test or
estimator is reasonable. This may not be the case in finite samples, and the per-
formance of a test statistic or estimator is usually evaluated by standard simulation
techniques, commonly known as Monte Carlo experimentation. However, one can
obtain the exact distribution of any test or estimator for any discrete data model,
although it is not always computationally feasible to do so. This article presents a
general technique for enumerating such a distribution, and demonstrates it for two
examples: obtaining the power curves for test statistics obtained from the classical
Probit binary data model, and examining the risk behaviour of individuals.

The idea of enumeration has been around for some time, and its main use has
been for exact inference in logit and related biometric models. Cox (1970) showed
that it is possible to evaluate the exact distribution for a binary data model by
enumerating the sample space of the minimal sufficient statistic for a logit model.
Hirji, Mehta and Patel (1987) present an algorithm for obtaining the distribution
of sufficient statistics of a logistic regression model that can enumerate the prob-
abilities for a larger model than that previously envisaged at the time; a sample
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274 SIMON PETERS AND ANDREW CHESHER

of size 40 with 3 binary covariates and a constant. This type of data is common
in biometric applications, and versions of the method of enumeration have been
used to evaluate, for example, the performance of the likelihood based tests (Hirji,
1991) and Markov chain Monte Carlo methods (McDonald, Smith and Forster,
1999). This form of enumeration can be extended to any model as long as it has,
in the terminology of McCullagh and Nelder (1989), a canonical link function.
Hirji (1992) presents an extension of the earlier algorithm to polytomous response
models.

The technique presented in this paper can be applied to a greater variety of es-
timators and tests than those referred to above, although it was first used by Berkson
(1955) for evaluating the performance of maximum likelihood and minimum x?2
estimators of logit models for case-control studies. This work has been re-examined
recently by Hughes and Savin (1994). Its first application to an economic problem
appears to be in Hausman and McFadden (1984), where general enumeration is
used to evaluate the performance of a misspecification test for a simple discrete
choice model.

In economics, however, one might consider an average small cross section data
set to consist of 1000 observations and 10 explanatory variables, which is much
larger than those found in the field of biometrics. This makes enumeration im-
practical for everyday inference in standard applied economic models. It does not
preclude its use, however, in distributional experimentation where the design of an
experiment can be chosen by the researcher. Enumeration can, therefore, be used
instead of simulation to examine the behaviour of estimators and test statistics, and
is more efficient computationally in small samples when used to study the power
properties of statistical hypothesis tests, or the robustness of estimators to model
misspecification. The power properties of a hypothesis test can also be analysed
by standard asymptotics, however there is strong evidence that these theoretical
results can be misleading (Nelson and Savin, 1990; Davidson and MacKinnon,
1984). Further, it is also possible to use this methodology to analyse the responses
of individuals to experimentally designed studies or surveys. There are at least three
areas of modern economics where such a study or survey might arise in practice:
experimental economics (examining an individual’s perception of uncertainty),
market research (analysing the responses of individual focus group members), and
human resource management (testing job candidates for suitability).

The remainder of this article is laid out as follows: Section 2 presents the details
of general enumeration for a binary response model, Section 3 uses it to evaluate
the power performance of a misspecification test for the Probit model, Section 4
discusses its advantages over standard simulation, and Section 5 presents a small
empirical example that uses experimental economics data. Section 6 concludes.
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2. A General Approach to Enumeration

The discrete nature of binary response variables allows one to generate all the
possible outcomes (0s or 1s) for a data set of size N. For example, if N = 3
then one has 8 possible configurations of 3 responses: (0, 0, 0), (0,0, 1), (0, 1, 0),
(1,0,0), (0,1, 1, (1,0, 1, (1, 1,0) and (1, 1, 1). These are fixed no matter what
binary data model is used to obtain an estimate (or test statistic) for a configuration.
The estimates from a given model make up a sample space, and the probability
distribution associated with this sample space is given by the probability of each
of these configurations occurring. So, the probability assigned to a configuration is
also the probability of any statistic calculated at that configuration. The technique
of enumeration calculates all these statistics and their associated probabilities.

This raw enumeration can be split into two parts by noticing that the probability
of a configuration occurring does not depend upon the model chosen to calculate
the estimates at that configuration. The sample space, therefore, has two models
associated with it; the true model that generates the probability of an outcome and
the maintained model that is used to compute estimates and related statistics. Such
a split enables the points of support of the sample space, which are determined by
the maintained model, to be obtained separately from their probabilities, which are
determined by the true model.

This method only appears to be computationally tractable for small sample
sizes. However, computational efficiencies can be obtained by restricting the enu-
meration to the observations that might be generated by a replicated design matrix.
The underlying methodology is that of a classical simulation study, but without the
Monte Carlo error.

The basis for this is the following binary data specification. Given a column
vector of coefficients, b, and a column vector of covariates, X, then for the response,
y, Pr(y = 1|x) = F(b’x) where F(.) is a cumulative distribution function. The
responses are assumed to be independent across observations.

In order to allow for replicated designs one assumes that the covariate vector,
X, takes values at M distinct points, and the number of responses (dependent vari-
ables) at each point is known. At each point i, therefore, there are N; responses.
So, there will be J = ]_[fil(Ni + 1) configurations in total and N = Zf‘i | Ni ob-
servations per configuration. For the case where there is no replication (N = M),
this gives 2" configurations for a sample size of N, resulting in just over a million
configurations for sample size 20 and over 10'? for sample size 40. At the present
time, the former is computationally feasible but the latter is not. Larger sample
sizes have to be obtained by replication. For example, assuming 2°° configurations
is an operational upper limit, one can obtain larger sample sizes of N = 75 when
M =5 (N; =15), and N = 301 when M =3 ({N;} = {100, 100, 101}).
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2.1. GENERATING CONFIGURATIONS

This section describes how one generates a sample in a repeatable manner. In this
way the parameter estimates from the maintained model can be matched up with
the associated probability from the true model. One must be able to generate all the
possible response configurations for the maintained design. This is done by noting
that the total number of configurations (J) is equivalent to the number of elements
in an M dimensional array with indices running from O to ;. Knuth (1973, p. 296)
shows how elements of such an array can be sequentially allocated to locations in a
computer’s memory. The opposite of this allocation returns the array’s index values
from a given memory location.!

An index value gives the number of unit responses at point #, and is obtained
for configuration number j as:

i—1
SiJ:LJD Jmodulo(Ni+1),i=1toM,j=1toJ, (1)
where D; = ]_[i;})(N, + 1), Np = 0, and [.] represents the floor function (| x| is
the greatest integer not exceeding x). This can then be used to generate a stand-

ard binary regression sample by creating S; ; responses of y = 1 and N; — S, ;
responses of y = 0 at each point i.

2.2. THE MAINTAINED MODEL
The maintained probability model is used to obtain the estimator. It consists of:

(a) afixed N by p design matrix X,

(b) a specified probability model, F,,, that links a covariate point to the
outcome, and

(¢) amethod for computing the parameter estimates.

The application of the maintained model will produce a vector of p parameter
estimates, b, at each configuration.

The probability model is decoupled from the estimation method, allowing one
to distinguish between different estimation methods for the same F,, and X. An
example of this could occur in the Probit model (F,, = ®, the standard Normal
cumulative distribution function) if one needed to compare maximum likelihood
and minimum x? estimators.

A discussion of the computational details of obtaining parameter estimates is
beyond the scope of this article, however, no matter what model and method are
chosen there will always be the problem of coping with data configurations that
admit infinite parameter estimates. This is discussed by Silvapulle (1981) among
others, and an algorithm to identify these improper data configurations is presented
in Burridge and Silvapulle (1986) for the general case. Configurations of responses
and covariates are categorised as completely separated, quasicompletely separated
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and overlapped. If there exists a hyperplane in the covariate space separating design
points with unit responses from design points with zero responses then there is
complete separation. If there is not complete separation only because one or more
design points lie on what would otherwise be a separating hyperplane then there is
quasicomplete separation, otherwise there is overlap. Only in overlapped configur-
ations do unique finite valued maximum likelihood estimates exist. The detection
of non-overlapped configurations is always possible using linear programming
methods but straightforward inspection is all that is required in simple designs.

Given X, F,, and an estimation technique, all the maintained model’s unknown
parameter estimates can be obtained by following these steps:

Algorithm M (obtaining all the finite parameter estimates).

MO. [Initialize.] Set j to O.

M1. [Loop.] Increment j. While j < J perform the following:

M2. [Obtain a configuration.] Generate the {S;;} using formula 1, and use them
to create the responses, y; say, associated with X.

Ma3. [Check for an improper configuration.] Examine the y; and X using
the methods discussed above. if the data configuration is overlapping,
continue. If the configuration is non-overlapping note the configuration
number in a monitoring file and skip to M1.

M4, [Obtain the estimates.] Use the maintained model’s estimation technique
to obtain the parameter estimates for the responses, y; and model specific-
ation X and F,,.

MS. [Save.] Write the estimates and their configuration number, j, to a file.

MB6. [Continue.] Skip to M1.

Functions of the parameter estimates, such as test statistics, are best obtained in
a second pass. This avoids repeating the computationally intensive step M4 if one
decides to calculate another test statistic. In this case, the binary file containing the
estimates should also be opened in step M0O. M4 is now replaced by:

M4*, [Obtain test statistics.] Read in the estimates associated with configuration
Jj from the file they were saved to. Calculate the desired test statistic from
these estimates for the responses, y; and model specification X and F,,.

2.3. THE TRUE MODEL
The true probability model consists of:
(a) the true N by ¢ design matrix Z, where ¢ is the length of a covariate vector
Z’
(b) a probability model, F;, that generates the true probability of an outcome,

and
(c) the true parameter values, b.
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A correctly specified model has F,, = F,and X = Z (p = ¢q). If p < ¢ there
is omitted variable misspecification present, and distributional misspecification
occurs when F,, is different from F;.

The probability for each configuration under the true model is:

M
N; . "y
n; = Pr(configuration j) = 1_[ (s. ) F,(b'z)5 (1 — F,(0z)N=5i, (2)

i=1 LJ

where z; is a distinct point from the design matrix Z and S; ; is the number of unit
responses at point i for configuration j.

Given Z, F, and b, the probability of an estimate (or a function of an estimate)
can be obtained by following these steps:

Algorithm T (obtaining all the probabilities).

TO. [Initialize.] Open the file containing the saved values and their configura-
tion code.

T1. [Loop.] Until the end of the file, perform the following:

T2. [Input.] Read in the saved values and their configuration code j.

T3. [Obtain a configuration.] Generate the {S;;} using formula 1.

T4. [Obtain the probability.] Calculate the probability, 7;, of this configuration
using formula 2, given the chosen Z, F; and b.

Given the maintained probability model estimate, Bj, for configuration j, our
true model generates its probability 7;. However, because not all configurations
admit finite estimates it may be necessary to work with the probability conditional
upon a configuration being estimable (admitting finite parameter estimates). This
probability is simply calculated as 7z, = Z,J‘=1 8;mj, where J is the total number of
configurations for the maintained model, and §; = 1 if configuration j is estimable,
0 otherwise. The probability of obtaining finite statistics calculated at configuration
J, suchas by, is then just 77 = Z—i

2.4. THE EXACT DISTRIBUTION

Once one has obtained the estimate, b j» for configuration j, and its probability 7;
(or possibly 7}), the sampling distribution of any statistic, 7, calculated from by,
?} = g(B,») say, can be obtained in the following way:?

Algorithm E (obtaining the distribution).

EO. [Order the points of support and probabilities.] Sort the ’t; in ascending
order, and impose the same ordering on the probabilities. All duplicates of
a statistic f; are ignored at this stage, but the probability associated with
this configuration is multiplied by the number of replicates of ?;

El. [Obtain the cumulative distribution function.] Let j* represent the new
index for the ordered and unique set of statistics, 7;,, and their associated
probabilities 7 ;,. The sets of all these values give the points of support

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com



ON THE USE OF ENUMERATION 279

and probability mass function respectively. The cumulative distribution is
obtained simply by applying a cumulative sum operation to the vector of
probabilities to give P, = > /% ;.

The exact distribution of ¢ then consists of:

(a) the sample space {?;*},
(b) the probability space {7 .},
(c) and the cumulative distribution function {P;.}.

2.5. SOME COMMENTS ON IMPLEMENTATION

Since there may be very large numbers of probabilities to compute, each very
small in value, care has to be taken to compute them precisely. In practice this
is achieved using high precision arithmetic, by computing log(F;(b'z;)) utilising
accurate routines for computation of the log-gamma function, only reverting to
the probability metric when probabilities have to be summed during calculation
of distribution functions and moments, and by summing sorted probabilities so
that smallest probabilities are accumulated first. Any precision problems associated
with these calculations, and the uniqueness of the tests or estimates, did not appear
to cause any trouble for the examples studied in Section 3 and 5.

In order to economise on storage space, the estimates and test statistics obtained
using algorithm M should be saved in binary files. It is also good practice to mon-
itor the process and record the indicators of the improper configurations and any
others that might appear to unsettle the optimisor at step M4. Binary files will also
have to be used if algorithms E and T are unable to process the configurations using
available computer memory.

However, it must be emphasised that the method is only feasible for small
samples. A comfortable upper limit to the number of configurations is 2% using
standard computing technology, a sample size of 24 without replication.?

Further, the probabilities can only be obtained by specifying the true model.
This is analogous to the data generating process in a Monte Carlo study. In the
following section, the true model is changed in order to investigate the size per-
formance of a distributional misspecification test. Algorithm T is run with F; = F,,
and Z = X for each choice of b. The power of the test is investigated by running al-
gorithm T with different F;. Algorithm M is run twice, once to obtain the estimates
and once to obtain the test statistics.

3. An Application to the Probit Model

One of the original motivations behind this work was to examine the performance
of tests for model inadequacy. Chesher and Peters (1995) used this technique to
investigate the bias of Probit model estimates, and associated tests for omitted
variables, while Peters (1995) explored the size and power properties of a com-
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mon test for error misspecification in the standard Probit model, the score test
for non-Normality. This later work complements several studies of related tests in
the literature, see for example Davidson and MacKinnon (1984, 1998), Horowitz
(1994), and Skeels and Vella (1998).

As test performance is not the focus of this article, only one set of size and
power results will be reported for brevity. This is enough to demonstrate the utility
of general enumeration for investigating the finite sample behaviour of statistics
obtained from discrete response models.

The score test is obtained from the locally augmented log-likelihood for a
Probit model, based on a single observation (y,, x/,) with a parameter vector of
0= (b, w)":

L*OXn, yu) = ynlog(@(b’x,)) + (1 — y,) log(l — @(b’x,,))
+log (1 + %(e,(f) —3e") + %(6,(14) - 36,(,2))) , )
where the fest parameters w; (associated with skewness ) and w, (associated with
kurtosis) make up the vector w = (w1, wy)’. This takes the value w = (0, 0)’ when
the score test statistic is evaluated. The response, y, takes the value 1 or 0, n = 1
to N, and ®(.) is the standard Normal cumulative distribution function with an
associated density ¢ (.).

The generalised errors, e,(lj ), Jj = 1to4, introduced by Chesher and Irish (1987)

are defined as follows for the Probit model:

M _ ¢ (b'x,) (- o (b'x,) .
o = ) ( yn.)—l —ohx)’ 4)
e? = —b'x,el (5)
e = 2+ W'x) el ©)
e = —b'x, 3+ W'x,) el 7

The corresponding residuals, ¢\, are evaluated at b, and used to calculate the

test statistic. The score vector under the null is obtained as:
/
OL* (0%, yn) _ 0y e® — 3¢ @ _ 3,2
20 noon 2 ’ 4

(&)
Suppose § = ', 0")’, then define the score quantities as s, = w(e+g'“y"),
S, = Sply_g and § = Z;Y=1§n~ A fully efficient (FE) score test statistic for the null
hypothesis of correct distributional specification (F,, = @ for a Probit model)
can now be calculated as § (\7 re)” 18, where VFE is the estimated sample in-
formation matrix for (3) under the null. Given the augmented covariate vector

X, = (X, B/x"—;_l, #)/ , this matrix is defined as:
N A
% b’ L 2 A A
Vep=y — 20X oo ©)
am1 P(bx,) (1 — @(b'x,))
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The score test statistic has an asymptotic reference distribution of x7 under the
null.

The first problem that needs addressing is how to handle improper configura-
tions. If one is testing for an omitted variable, as in Chesher and Peters (1995),
then there is some scope for obtaining test statistics when the full configuration
is improper. One is able to use extended maximum likelihood estimates (Clarkson
and Jennrich, 1991) when calculating a likelihood ratio statistic, while the score test
only requires that the null configuration be estimable. Neither method is applicable
here because the observed test statistic has components that are powers of the es-
timated linear predictor (b’x). If this is not finite, then the test statistic is undefined.
The size and power of the score tests are, therefore, calculated conditionally on a
configuration admitting estimable parameters.

The enumeration experiments are designed to try and allow for a reasonable
sample size, N, to be obtained, while retaining enough distinct design points, M,
to be meaningful. In this way one could get some idea of what might occur in a
larger sample and avoid any of the small sample problems that occur because of
the presence of improper configurations.

The study uses the standard Probit specification for the maintained model, with
the design matrix X containing M distinct design points of the type x,, = (1, 3/5)’
where m = 0 to M — 1. The parameter vector b has length p = 2. The results
reported in this article use a design with N = 50 with M = 5. The number of
responses at each point is set as N; = % Size and power are investigated by
changing the true model. Peters (1995) reports a larger selection of experiments
with N = 20, other choices of parameter coefficients and the outer product of
gradient (OPG) form of the test statistic.’

3.1. TEST SIZE

Orme (1990) and other authors have examined the size properties of related tests
in a limited dependent variable context. The perceived opinion is that both the
FE and OPG forms of the test have asymptotic approximations of their sampling
distributions that are over-sized, and that this is much worse for the OPG case
(which is confirmed in Peters, 1995). However, the simulations in Skeels and Vella
(1998) suggest that the FE form of the test could also be under-sized.

The behaviour of the FE test is compared with its first order asymptotic ref-
erence distribution by the use of quantile-quantile (Q-Q) plots. These types of
graphs are now widely used in the statistics literature, and give an overall picture of
distributional behaviour, especially in the tails, and are, therefore, of greater utility
than tabulations. (Alternatives have been proposed, see Davidson and MacKinnon
(1998) for example). In these enumeration experiments, the plots are construc-
ted by plotting ?;* against F _I(ch*) where P, is a continuity corrected version
(P, = w with Py = 0) of the distribution function at 7;, and F~! is the
inverse x3 cumulative distribution function. If these distributions are the same, the
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Figure 1. Q-Q plots for different b1 values.

plot will follow the 45° line on the graph. Three further lines have been drawn on
the graphs, corresponding to the 10%, 5% and 1% critical values for the target x5
distribution.

The FE test appears to be remarkably well behaved, in that it follows the line
45° on the graphs, for most of the plots in Figure 1. However for b; = 3 the test
starts to become over-sized in the tail. This poorer performance occurs when the
expected ratio of unit to zero responses moves away from 1 : 1. For the designs
used in Figure 1 these ratios are approximately 1 : 2, 1 : 1,2 : 1, and 3 : 1 for
by =0, 1, 2, and 3 respectively.
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3.2. TEST POWER

One power study in the literature that deals with Probit models and the type of tests
under scrutiny here is that of Skeels and Vella (1998). They examined versions of
the conditional moment test for omitted variable, heteroscedastic and distributional
misspecification. Their tests are not algebraically equivalent to those used here, but
they are related. Their findings suggest that non-Normality and heteroscedasticity
tests have very poor power. Given that their design had 610 observations and 7
cocfficients, this is not very encouraging. This is partly contradicted by the study
of Horowitz (1994), who shows that the OPG full Information Matrix test has good
power properties for his heteroscedastic alternative, even with a sample of size
50. Davidson and MacKinnon’s (1984) results tend to support Skeels and Vella’s
(1999) results for heteroscedasticity, though they are slightly more optimistic. The
enumerations in this section are an attempt to try to examine and explain this
behaviour by obtaining the exact power curves for a wider range of alternatives
than commonly used in Monte Carlo experimentation.

Four alternatives were chosen. The first two used the Burrll density as the dis-
tributional misspecification. This density is discussed in Fry (1993) and is used
here because it has both non-Normal skewness and kurtosis. The standardised
version was used to enforce zero mean and unit variance, so that the misspe-
cification entered through the distributional shape. This was then relaxed to allow
for mean and variance distributional misspecification. The Burrll distribution is
F(x) = (1 + e %)% where k > 0 and x € (—00,00). This alternative was
controlled by its nuisance parameter k, with £ = 1 giving the logit specification, a
distribution is skewed to the left when £ < 1, and to the right when £ > 1.

The third alternative was a mixture of the Normal, N(0, 1), and Cauchy,
C (0, 0.674) distributions. Here the nuisance parameter controlled the amount of
mixing, with 0 being the null and 1, Cauchy. The Cauchy distribution was stand-
ardised to have the same inter-quartile range as the Normal. This alternative has
kurtotic misspecification only.

The fourth alternative introduces heteroscedasticity by specifying the Normal
as N(0, ecﬁ'z) where ¢ = 0 gives the null. This alternative was used by Horowitz
(1994) in his study, and assumes that heteroscedasticity is a function of the linear
predictor. Given that this factor enters directly into e, j = 1 to 4, the Normality
test should respond to this alternative.

The power for these alternatives is summarised by plotting the curves for the
different values of by, given by = —0.5, and the alternative distribution. The
mixing parameter for the Cauchy/Normal alternative, and for the heteroscedastic
alternative range from 0.0, the null, to 1.0 with increments of 0.1. The Burrll
alternatives take the same values of k. It ranges from 0.1 to 5.0 with increments
of 0.1 for the left skewed alternatives, and 1.0 for the right skewed alternatives.
The logit misspecification is emphasised in Figure 2 by the vertical line at k = 1.
The power is calculated at the value obtained for the exact sampling distribution
obtained under the null for a size of 5%.
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Figure 2. Power curves.

The overall result superficially confirms the observations of Skeels and Vella
(1998), that these forms of distributional misspecification test have poor power.
Their comment that they have little useful power except when testing for certain
asymmetric distributions is too pessimistic however, as certain of the alternatives
presented here do exhibit power, and for a much smaller sample size than their
experiments. This is most marked for the heteroscedastic alternative in Figure 2.

The main weakness of this method, in general, is that the small sample sizes
and restricted covariate designs can admit improper configurations with high prob-
ability. This can affect the size by making the discrete nature of the exact sampling
distribution more apparent, and so rendering it difficult to evaluate power over
a variety of designs. This did not, however, cause any serious problems for the
configurations examined here. On the other hand, when this design effect occurs
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via the alternative specification, one’s ability to evaluate the power performance of
a test is obscured and it becomes difficult to extrapolate the results in a qualitative
fashion to larger sample sizes. This occurred for the more extreme of the skewed
Burrll alternatives, and can also occur through the choice of b. As the coefficients
become large in size, the probability of having all unit or zero responses also
increases. A study of this problem in binary data models using large parameter
asymptotics is presented in Savin and Wiirtz (1999).

4. Enumeration Versus Simulation

Exact enumeration avoids the sampling error associated with simulation studies.
It also generates all of the extreme data configurations, an advantage noted by
Diaconis and Holmes (1994). These may not be generated within a simulation
study, either because of their rarity with respect to the total number of Monte Carlo
replications or because of computational limitations associated with the random
number generator. Once a maintained model has been enumerated, these estim-
ates are fixed no matter how the true model is changed. This is not the case in a
Monte Carlo procedure, when the estimates have to be re-calculated if the true data
generating process is altered.

These efficiency gains can be quantified using the maintained work ratio, which
compares the computations done to obtain the estimates and tests for the main-
tained model with those needed for a similar simulation study. This is given
as:

M
{1+ B [TV + D
i=1
Ry cNp(Na + Co)

where Ry is the number of replications used for the misspecified simulations,
Np is the number of design parameter choices, N4 is the number of alternatives
investigated and Cj is the multiplier for the number of replications used for the null
specification. The configurations require more processing time than a simulation,
because of the probabilities associated with the true model. This is measured by
the inflator for the processing time: 14 (%"A}LD), which is a crude measure of the
relative number of operations needed to calculate a point’s probability (Equation
(2)) compared with that from an estimation (optimising (3) using Newton’s method
with p = 2).

The following table shows the efficiencies based on the power investigations
used above and in Peters (1995), which have Np = 8 and N4 = 76, compared to
a comparable simulation assuming Ry = 1000 and Cy = 10 (implying 10000
replications are used to obtain the size distribution).

The entries in Table I are conservative in that they are more likely to be biased in
favour of simulation. The work ratio has been calculated assuming the generation
of the simulated samples is equivalent to an enumeration sample and negligible

; (10)
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Table I. Design work ratios: enumeration to simulation.

N=20M=10 N=200M=5 N=50M=5

0416 0.013 0.414

compared to an estimation that required a numerical optimisation. Taking this into
account, Table I shows that the experiments reported in Section 3 above required,
at most, 41.4% of the computational effort for a simulation study with a sample
size of 50.

5. An Empirical Example®

Hey and Orme (1994) test expected utility theory (EU) using data on choices
between lotteries. Their experimental subjects were confronted with a set of choice
problems that involved two lotteries with the money amounts £0, £10, £20 and
£30. A single lottery is represented by a set of four probabilities, correspond-
ing to the four money amounts. Hey and Orme (1994) distinguish between the
two lotteries by referring to one as the left-hand lottery and the other as the
right-hand lottery. They define the left-hand lottery by the vector of probabilit-
ies p = (p1, p2, P3, pa), and the right-hand lottery by q = (g1, ¢2, g3, q4)'. The
experimental design is that implied if one assumes that subjects have a risk-neutral
utility function. If one measures wealth in units of £10, then the risk-neutral ex-
pected utility of the left hand lottery is simply x = d> + 2 % d3 + 3 * d4 where
dr=p>—qr,ds = p3 —qsand dy = ps — qa.

Let the binary variable under analysis be y, taking the value 1 if the left-hand
lottery is chosen by the subject, and zero if the right hand lottery is chosen. Follow-
ing the same strategy as Hey and Orme (1994), assume that the left hand lottery is
chosen if the difference between the expected utilities of the two lotteries, plus a
random term, exceeds zero.” So, under risk neutral EU, Pr(y = 1) = Pr(x+¢ > 0)
where € ~ N(0, 0?). This can be specified as a standard Probit model where
Pr(y = 1) = ®(kx). Under the assumption of risk-neutrality, if EU holds, £ > 0
and can be interpreted as 1/o. If £ <= 0, EU is violated.

Hey and Orme (1994)’s original study involved 80 subjects and 100 questions.
The subjects were also allowed to return an indifferent response. The example here
uses 8 subjects who never reported indifference, and is a subset of the original
experiment that uses the first two responses of a subject to problems that have x
values ranging from —0.5 to 0.5, with increments of 0.125.

Enumeration can be used to find the exact probability that an individual exhibits
EU by testing HO : k > Ovs. HA : k <= 0. Algorithm M is run just once to obtain
all the possible values of & for the Probit model given above. This design has 2 ob-
servations on 9 unique points, giving a sample size of 18 and 19683 configurations.
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Table II. The probability that a subject exhibits EU.

Subject k Exact Asymptotic
1 0.104 0.855 0.864
2 0.162 0.954 0.947
3 -0.143 0.048 0.072
4 -0.346 0.000 0.005
5 0.255 0.996 0.988
6 -0.017 0.392 0.428
7 0.122 0.894 0.897
8 -0.104 0.107 0.136

The exact distribution for an individual subject is obtained by running algorithm
T using the same design but with b set to the value of £ observed for that subject.
Algorithm E is then run to obtain the unique points of support, along with their
probabilities. The exact probability that £ > 0 for a subject is obtained by simply
adding up all the probabilities for the positive points of support. The results for the
eight subjects are reported in the following table, along with the probability one
would have obtained using standard asymptotics.®

The probabilities above are the p-values for the test that & is positive for a given
subject. This suggests that one would reject the null at the 5% level for subjects 3
and 4 using the exact values. The asymptotic results suggest that only the null for
subject 4 would be rejected.

This example has been presented to demonstrate that enumeration can be used
in empirical work. The further examination of all the designs presented in the Hey
and Orme (1994) study, including the possibility of enumerating the 801900000
configurations required for the full risk neutral EU design, is left for future work.

6. Concluding Comments

This article has presented a method for the enumeration of the exact sampling
distributions of statistics and estimators of binary data models. The technique was
used to examine the finite sample behaviour of a misspecification test for the clas-
sical Probit model. The method has definite advantages over the alternative strategy
of standard simulation. The efficiency gain of this method over simulation lets the
researcher tackle a larger number of experimental designs than commonly used in
econometric simulation experiments and is of greater applicability than competing
enumeration algorithms.

The disadvantage of enumeration is that the method is restricted in the experi-
mental designs it can cover by the need to have a small number of distinct sets of
explanatory variables, x, making up the covariate matrix. This makes the method
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unattractive for the data sets commonly used in applied work today. However, there
are areas of modern economics where small samples and experimental designs can
be found, and it is in these situations where asymtptotic approximations are likely
to be poor. This was demonstrated in Section 5.

There are three different strands one might pursue when trying to increase the
applicability of enumeration. The first brute force extension would just rely on
computational power to tackle larger sample sizes. However, it may be better to
move away from serial computation, as enumeration will lend itself to parallel
or distributed operations. A second theoretical approach could be to employ some
form of approximation or smoothing, as suggested in Diaconis and Holmes (1994),
to reduce the overheads of this procedure while obtaining most of its advantages.
A third area of extension is design related and involves conditioning the model on
a fixed response set. Instead of generating all possible configuration, one would
condition on all samples that admitted a fixed number of unit responses.
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Notes

! Formula 1 decodes Knuth’s formula 5 assuming the base location is 0 and the word length,
Knuth’s ¢, is 1. Knuth’s array indices, dimensions and memory location correspond to S; ;, N; and j
respectively.

2 The function g(.) is a mapping from RP — % and could be anything from a selection operation
to obtain a specific estimate from the vector b j» to the calculation of a test statistic such as those
used in Section 3 below.

3 In October 1999, personal computers with 600 MHz processors, 37.5 GB hard disks, 768 MB
RAM and writable CDs (650 MB disks) are readily available.

4 All calculations were performed in double precision arithmetic on a Sun SPARCstation 2 run-
ning SUN-OS 4.1.2 or on a Hewlett-Packard HP9000/827s running HP-UX Release 9.0. Results’
summaries were performed using Statistical Science Inc.’s S-Plus version 3.1. Estimation and service
routines were written in Fortran77.

5 The OPG test is calculated as §'(V o pg) ™18 where Vo pg = Zy:l Snsh.

6 This example used a personal computer with a 400 MHz processor running Red Hat Linux
version 5.1. Gentleman and [haka’s R was used instead of Splus.

7 The random term represents the numerical error made in the comparison of the two expected
utilities.

8 Results are given to 3 decimal places.
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